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As a preliminary we examine a two-ray condition as shown in Figure 4.

One wavefront is assumed to arrive al(ng the x-axis, another at an angle 0.

The wavefronts are sinusoidal in time and the sum at points along x 4s

s(t,x) Alcos(wt - kx) + A2 cos(wt - - kx cose) (1)

RAY

DIRECT RAY j

FIGURE 4. RAY ARRIVALS

The case treated here Is analogous to one encountered in -M .systems with
si.-oidal interference to a de-qired cayrfer.
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A1 and A2 represent the magnitude of the two wavefronts, * is the phase dif-
ference between them at x- 0, and k = 2n/X where X is the wavelength. A

sensor at point x responding equally and linearly to both wavefronts would

see s(t,x). Writing (1) in envelope-angle form,

s(t,x) = B(x)cos(wt + 'T(x)) (2)

where

B(x) A 2 + A22 + 2AIA2 cos [ -kx(l - cosB)] (3)

-1 A sin kx + A2 sin(O + kxcosO)
*(x) = tan AIcos kx + A2 cos(O + kxcos6) (4)

The phase obtained using (4) will be modulo-2,r. It is useful to deal with

the phase derivative di/dx if the modulo-27 ambiguity is to be avoided. It

can be shown that

dFlk - 1-a
2  1(5)

dox - k- k(1 - cose) I + --- (5)ki~x -- -oi 1 + a2 + 2a cos[4 - kx(l - cosO)]

where

a - AI/A2  (6)

When a is large, meaning that the important part of the received wave is

along the x-axis

d = k _ k(l - cosO) cos[O - kx(l - cosO)], (7)
dx a

It fluctuates sinusoidally around k with the fluctuation amplitude decreasing

to zero as a goes to infinity. For a small

dl= k cosO - ka(l - cosO) cos[4 - kx(l - cosB)], (8)
dx

again a sinusoidal fluctuai-ion which decreases to zero as a approaches zero.

FOL intermediaLe values of a the fluctuation of d4/dx is as shown in Figure 5.
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FIGURE 5. PHASE DERIVATIVE VARIATION WITH
DISTANCE TN THE TWO-RAY CASE.

The variation is periodic with period

X
1 - cosa (9)

and has peaik excursions above and below k given by

= k(l - cose)/(a - 1) (10)

a = -k(l - cosO)/(a + 1) (11)

Figure 5 is drawn assuming a > 1. The fluctuation is around k, which turns

out to be the average of d /dx. Note that at a - 1+ 8 is positive and high

in magnitude, and the fluctuation is highly impulsive. For a < 1, df/dx

fluctuates around the value k(l-cosG) rather than around k and for a = - 8

negative and high in magnitude, and the fluctuation is again impulsive but

negative going. When a is close to unity the phase as a function of posi-

tion (which is the integral of dp/dx) is as shown in Figure 6.

In underwater applications the angle 0 typically found in long range

paths is less than 200. Assuming it to be 100 the period is

1 0.98 50A (12)
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It is interesting to note that in analyses found in the literature of the cor-

relation distance of underwater acoustic waves, numerical estimates around

SOX are typically obtained (see for instance [1]).

kq (0-) )L(a)

Irv

-- Co

(p k) (C2)

FIGURE 6. PHASE AS A FUNC'TION OF POSITION FOR NE,'LLY EQUAL MAGNITUDE RAYS.

III P. W. Smith, Jr., "Spatial Coherence in Multipath o Multimodel Channels,"

Journal Acoustic Society of Aweria, Vol. 60, No. 2, Aug. 1976, pp. 305-310.
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We now turn to the more general case of n wavefronts arriving at

angles ej, J - 1,2,.., n. The received sum at a position x is

n
s(t,x) - Z A cos(Wt - - kx cosOj) (13)

i-i

The *j, J - 1,2,.. .n are random phase angles of each of the wavefronts on

arrival at the point x = 0. It is convenient to write this in the form

s(t,x) - B(x) cos[t + , (x)]

- Re z(x)e j° t (14)

where
, n JO + kx cosOj -

z(x) B(x)eiY (x) E A e (15)
j=1

*(x) is the phase angle we will study ard as was done before we find the

phase derivative

I n = im(z 1 dz) (16)
dx z(x) -x dx

From (15) we have

dz n j( . + kx cosO.)

dx j Z A. k cosO e (17)
j=l

so that (16) becomes

JOi+ kx cosO)
EA k cosO e

Imdx d(J i+ kx cosQj)
EA eii

E E - k. + kx(cosO - coo )]
E:£A i Aj kcos0o ei
i i -

j( + kx cosO) 12

F~ E A A k coso .co.4, -. + kx(c o. - co.;O)1

E i :AAC(!1 4- k I
....._ N. ,.. . (18)

£ A Aj  co ;[4 t - 4. + kx ( ci:,, O - ,"a 4) ]

j :1 *~i
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As a rule 2 << and cos8i = 1 - . Where this approximation is permis-

sible we can write

dE E k i2 a ij (x) (19)
dx 2 E E aij(x)

where

aij(x) A 1A cos[¢i - 0 + kx(cosO i - cossj)]

To retrieve i we must integrate di/dx; i.e. we form

dx dX = p(x) -(0) 
(20)

The integration will generate the phase difference between the phase at x

and the phase at the origin of integration. From (19) we see that one term

on integration will te kx, the linear phase variation associated with the

normal phase vs. position function of a plane wave along the direction of

travel of the wave. In beam forming with an array of sensors along x one

will subtract the phase progression kx if the axis of the beam is to be

colinear with the x axis. In this case the remaining phase difference be-

tween a point x and the origin is

E E 0 i2 a j(xI

-k ij
-E ~ij dx 1 (21)

roi j 
a i j ( Il

If the approximation cosOi - 1 012/2 is not used, the remaining phase

after correcting for kx is given by subtracting k from (1.8) and integrat-

ing over x.

Numerical evaluatloa of the remaining phase differcnce have been made

for a number cf cases. One particilar case Is shown in Figure 7 determined

assuming 21 equal ampiittmrh rays arriving at 20 Intrrvals from 0 = -20) to

Programming of this computation and the one described later giving array
pattern, uar clone by D(! Jtan lio.
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+20 ° with respect to the horizontal (see Figure 4), each with a phase angle

# randomly selected in the interval (0,2Tr). Because the average wavelength

of the various rays as seen along x is less than X, the wavelength along the

direction of travel of the ray, there is a linearly-tending phase accumula-

tion with distance as seen in Figure 7. On top of this accumulation there

is a random variation. The fluctuation around a straight line approximation

to the phase difference ranges around +3 radians. Thus even if the phase

were corrected to account for the slope of the straight line approximation,

a + 3 radian random error would still be encountered.

Figure 7 was obtained with one randomly selected set of ray arrival

phase angles. Additional examples will be ultimately computed for different

sets of arrival phase angles to provide data suitable for obtaining statisti-

cal averages. Other cases, including different intervals of arrival angle,

different ray amplitudes, and different numbers of arriving arrays will also

be treated.

Having a sample function of phase vs. position, a logical next step is

to determine the gain and pattern of the random planar floating array when

it is focused in some azimuthal direction using conventional beamforming,and

when the source signal is propagating toward the array through the multipath

medium. As a first step a program was developed for selecting element posi-

tions over a circular area assuming a uniform distribution of clement posi-

tions.

If the array is assumed confined to a circle of radius p with uniform

distribution over the circle, the density function in the joint random vari-

ables X, Y, is

px,y(X,y) =1 , x2 + y2 < P

7rp

= 0 , elsewhere.

Transform:ng to polar coordinates, (R,4), we have

PR, (r) r 2  , 0 < r < P

liP 0< < 2 R

0 , els~here
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The marginal densities in R and 0 are

2r
p(r), - 0 < r < 0i

0 , elsewhere

P 1)=2 0 < < 21T4 21T

0 , elsewhere

The random variables R and 4? are independent and independent choices of these

variables are made. Sample valucs of (P are obtained by a conventional com-

puter program which selects sample values uniformly distributed in (0,i) and

multiplies these by 2r. Sample values of R are obtained by picking a number

Z uniformly distributed in (0,I) and forming

R=z 1/ 2
R P

for then
PR(r) = pZ(z)I 2r

p

Finally, the pairs (r,,) so obtained are converted back into rectangular co-

ordinates by

x = r cost
y - r sin¢

Using element positions so determined the array pattern was next found.

The geometry of the problem is show n in Figire 8.

Assuming N elements distributed over the circle, cophased to form a beam

along the y axis, the array pattern is given by

I N J[k(xncos + ynsln - yn) - a(dn)]A( ) "= IIB(d )c

n= 1

where xn, yn *, and dn are defined in Figure 8, and a(d n ) is a phaise vs po-
sitIon function of the form obtained earlier and shown In Figure 7. B(d n ) is

the amplitudO, of the acetitIc field at the nth element. 'Ilils quantity can be

obtained uf;Ing the earlier analv:;if; but for our piti pos(-, LIOW We will assunie
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BOUNAY,

FIGURE 8. ARRAY GEOMETRY.

it constant and set it equal to unity for all n. Amplitude fluctuations as

a rule, cause minor effects compared to phase fluctuations. The phase sample

function of Figure 7, called now a(x) is used alone below: to assess the ef-

fect of the multipath medium. The variable x in Figure 7 is replaced by d ,
nj n

d ~ ~ ~ M = grrnS n -€

2 y2)1/2 -IY
=p - (Xn -y cos(tan -- K)

n x
11

Computer calculations of A(4), as described above, were carried out for two

cases: (1) ct(d ) = 0 and (2) ci(d ) as given by Figure 7, and the results
C n

are shown in F:igures- 9 and i0. Ca:&. 1 is that of propagation through a trans-

parent (non-multipath) medium while case 2 is for the particular multipath

case resulting in the phase function discuss.ed above. Note thaT. the gains along

the main beam in the two cases are In the rario of about !4.4 dB -- a substan-

tial factor; the sidelobe structur~e is different in detail but not In general

characterfrtics. These results, it m.ust be recognized, are based on one set

of random arrival phases and on on" set of random elem~ nt positions; whether
t"hey are re'precontativu~ renailns t,, be dator~nucd. Aver~'ging over s'any sets
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FIGURE 9. ARRAY PATTE"N OF RANDO'l FLANAR ARPRAY IN TRANSPARENT
MEDIUM. ENDEIRE BEAMf 10,',1ED AT A7lMIJTII7 ANGLE, =900.
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FZIGURE 10. ARRAY PATTEN OF Rak2DOX ?'-!,.AR ARLAY ASSUMIING MILTIPATH
PROPAGATION,. 1;NFIC2r ORED AT AZI,'-LTl A.NGLE 90"
FOR TR NSPART"MT IMEDIUM.

of arrival phases and element positions, ns well as carrying out additional

computations with other systera parameters, remnain to be done.

Fred Haber
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